
T W O - D I M E N S I O N A L  P R O B L E M  OF T H E  D E F O R M A T I O N  

O F  A P L A T E  BY A G L A N C I N G  D E T O N A T I O N  W A V E  

A. A. D e r i b a s  a n d  G. E.  K u z ' m i n  

This paper is concerned with the nonsymmetr ic  expansion of explosion products  bounded on one side 
by a line of expansion into a vacuum and on the other by a plate whose shape is also not known in advance. 
When a metal plate is projected by a plane charge,  the expansion of the explosion products  is t h r ee -d i -  
mensional.  However,  when the length and width of the charge are much grea te r  than its thickness,  in the 
f irst  approximation the effect of lateral  expansion may be neglected and the problem becomes two-dimen-  
sional. The solution of the problem of the plane stat ionary supersonic motion of a gas has been obtained 
numer ica l ly  on a computer  by the method of charac te r i s t i c s  with a p re l iminary  calculation of the initial 
supersonic section by the power ser ies  method. The symmet r ica l  p rob lem of the expansion of ex21os ion 
products  has been examined by numerous authors,  one of the ear l ies t  studies being that of Hill and Pack  
[1]. 

1. Statement of the Problem.  In Fig. 1 region 1 is occupied by undetonated explosive, the detonation 
wave AB moves to the left at velocity D, region 2 is occupied by the expanding explosion products.  We s e -  
lect a rec tangular  coordinate sys tem moving together with the detonation wave. In this sys tem the detona-  
tion wave is s ta t ionary,  in region 1 gas of density P0 moves to the right at velocity D, on the line AB the 
flow p a r a m e t e r s  are determined by the Chapman-Jouguet conditions, the flow velocity being equal to the 
speed of sound in the detonation products .  The flow in region 2 is supersonic,  the line AB being the sonic 
line. 

Thus we have the following gasdynamic problem: to find the flow pa rame te r s  in region 2 occupied by 
a polytropic gas. In this region the continuity equation, the irrotat ionali ty condition, and BernoulliTs equa-  
tion, i.e., the equations of plane s ta t ionary irrotat ional  gas motion in the absence of fr ict ion and heat con-  
duction, are  satisfied. 

Assuming that the explosion products  constitute a polytropic gas with adiabatic exponent k, we also 
know the p r e s s u re -dens i t y  relat ion 

D~k ~ 
p --D0~-~(k+ l) ~+~ pk , (1.1) 

Fur the rmore ,  we know the relation between the flow p a r a m e t e r s  in region 1 and the pa rame te r s  on 
the line AB 
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Fig. 1 

k 4- ~ kD poD ~ 
PD =--'~--Po, u 1 9 ~ a D ~ k + i  ' VD.=O' PD ~ k - ~ l  

The subscr ipt  0 relates  to the pa rame te r s  in region 1, the subscript  D to 
the p a r a m e t e r s  on the line AB. For  the speed of sound f rom (1.1) we easi ly ob-  
tain 

a~ = %~ (P/PD)k-i . 
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We i n t r o d u c e  the new unknown func t ion  ~(x,y)  o r  v e l o c i t y  p o -  
t e n t i a l ,  so tha t  

u = Oq~ l Ox, v = O~ l Og ,  

We now w r i t e  the  b o u n d a r y  cond i t i ons  that  m u s t  be  s a t i s f i e d  by  
the  f low p a r a m e t e r s  in r e g i o n  2. We have:  

on the  l ine  x = O, - 5  0 -< y --<5 0 

P'-~-PD, U~UD~aD, v~.O, P~PD 

at the  f r e e  s u r f a c e  y = g]z) 

p = O, v - -  ug '  (x) = O 

on the p l a t e  

v +  u / '  ( z ) = O  

(50 is ha l f  the t h i c k n e s s  of the  s l ab  of e x p l o s i v e ) .  

M o r e o v e r ,  an add i t i ona l  b o u n d a r y  cond i t i on  is i m p o s e d  on the  
p l a t e .  Th i s  cond i t i on  was  ob ta ined  in [2] in the  fo rm:  

/" (z) p [z, / (z)] 

[t + q' (x))~] ~/' p l a i d  ~ 
( i .2)  

H e r e  Pi and 5i a r e  r e s p e c t i v e l y  the  d e n s i t y  and t h i c k n e s s  of the  p l a t e ,  p [ x , f ( x ) ]  is  the p r e s s u r e  on 
the  p l a t e  at the  po in t  i x , f  (x)]. In th i s  c a s e  the  p l a t e  was  t r e a t e d  as  a l a y e r  of i n c o m p r e s s i b l e  f luid.  M o r e -  
o v e r ,  it was a s s u m e d  that  the  only  f o r c e  a c t i n g  on an e l e m e n t  of the p l a t e  is the  p r e s s u r e  of the  e x p l o s i o n  
p r o d u c t s  d i r e c t e d  a long  the  n o r m a l  to the  p l a t e .  The v e l o c i t y  of e ach  e l e m e n t  of the  p l a t e  in a d i r e c t i o n  
t a n g e n t i a l  to the  c u r v e  y = f ( x )  was a s s u m e d  to be  equa l  to  t he  d e t o n a t i o n  v e l o c i t y  in the s t a t i o n a r y  c o o r d i -  
nate  s y s t e m .  

We go o v e r  to d i m e n s i o n l e s s  p a r a m e t e r s  in a c c o r d a n c e  with the  equa t i ons  

x 50x', g = 50y', u = a D u '  , v = aDv~ 

a = aDa" , p = PDP', P = P D P ' ,  ~ = aD~oq)' �9 
(1.3) 

In t h e s e  e q u a t i o n s  the  p r i m e d  q u a n t i t i e s  denote  d i m e n s i o n l e s s  v a r i a b l e s .  We now ob t a in  the  fo l lowing  
equa t i ons  (the p r i m e s  have been  omi t t ed ) :  

o 
a (pu) ~ O (pv) _ ~ a~dp 

a ~ =  p~-X, u =  a ~ l O x ,  v =  o ~ / a g  

(1.4) 

with the  b o u n d a r y  cond i t i ons :  

on the  l i ne  x = 0, - l - - y < -  1 

g'71 9 lk.S.O , - 2 . "  
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Fig .  3 

p = l ,  u = t ,  v = 0 ,  p = l  

at the f ree  surface y = g (x) 

p = O, v - -  ug '  (x)  = O 

on the  p l a t e  y = f(x)  

v + u]'  (x) = O, 

r "  ~P (r po~o~ 
(1 + r , )  ~/: - k + t ~ = -~6~) " 

(1.6) 

(1.7) 

(1.8) 
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Fig. 4 

A numerical  solution of p rob lem (1.4), (1.5) with 
boundary conditions (1.6)-(1.8) was obtained on a c o m -  
puter  by the method of charac te r i s t i c s  with a p re l iminary  
calculation of the initial supersonic section by the power 
ser ies  method. 

2. Calculation of the Supersonic Gas Motion. The 
problem of calculating the initial supersonic section has 
been examined by many authors (see [1, 3, 5]). Our ap-  
proach is based on the method proposed in [ 1]. Repre -  
senting the unknown functions in the form of ser ies  in a 

neighborhood of the sonic line, f rom Eqs. (1.4) we obtain two infinite sys tems  of equations for the coeff i -  
cients of these ser ies .  Confining ourse lves  to small quantities of the third order ,  we obtain the solution in 
the fo rm 

- i + 3p (y) :~, ~ = p"(y) ~,, p. = i  - 3p(y) ~ .  

Here the function P(y) is determined f rom the equation 

p" = i8 (~ + t) p,2 

whose solution 

p (y)= ~/---~v {~ [Y3(k+ !)~+ c~I;0, I} 

is given by a Weierstrass function with real half-period w 2 = 1.52995; values of this function are tabulated 

in [4]. Starting from the boundary conditions at the free surface and on the plate and from the properties of 

the Weierstrass function, we uniquely determine the two constants C i and C 2. 

Finally, we have 

F i. 52995 l~ [ i .  52995 0,1] 
. 

The function P(y) has a pole at the point where the sonic line meets the free surface; therefore  we 
still need to determine the flow in the neighborhood of that point. However, as shown in [1], this flow is 
descr ibed by the Prand t l -Meyer  solution. 

Thus, we f irs t  constructed a noncharac ter i s t ic  line, conditions on which were then taken as the 
boundary conditions in calculating the motion of the gas by the method of charac te r i s t i cs .  
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In calculating the supersonic  motion of the gas it is neces sa ry  to solve 
three e lementa ry  problems:  at calculation of a point in the flow field, b) ca lcula-  
tion of a point on the plate,  c) calculation of a point on the free surface.  All these 
were solved by the standard methods descr ibed,  for example, in [6]. 

3. Solution Algori thm and Results of the Calculations. The general  network 
of cha rac te r i s t i c s  is presented in Fig. 2. Here,  ai, a2, ..., a n is the calculated 
noncharac ter i s t ic  line, anC is the free surface,  and aiD is the plate. 

The flow p a r a m e t e r s  are  known at the points al, a2, ..., an_l, a n. Solving 
problem (at success ive ly  for the pai rs  of points at, a2; a2, a3; ...; an_2, an-l ,  we 
find a cer ta in  auxil iary curve bi, b2, ..., bn-2. Then, solving problem (b) for 
points b i and a~, we find the point c i and establish the point en-I  f rom the known 

point an on the free surface.  We then determine the points c2, c3, ..., Cn-2, solving problem (at for the 
pa i rs  of points bib2; b2, b3, ..., bn-3 bn-2, respect ively .  Thus, we obtain the flow pa rame te r s  on a cer tain 
new noncharac ter i s t ie  curve ci, c2, ..., Cn-1. After each new noncharac ter i s t ic  curve is obtained, the p r o -  
cess  descr ibed is repeated. This a lgor i thm enables the flow calculations to be car r ied  to any length (de- 
pending on the number of given points on the noncharac ter i s t ic  curvet.  

The p r o g r a m ,  written in Algol-6O, contains three a rb i t r a ry  pa rame te r s :  k, the adiabatic exponent 
of the explosion products ,  r ,  the mass  rat io of the explosive and the plate,  and n, the number of known 
points on the noncharac ter i s t ic  curve.  

The resul ts  of the calculations are presented in graph form. Here,  x and y are measured in units of 
charge thickness,  and p in units of Chapman-Jonguet p re s su re .  The shape of the plate in the plane of the 
variables  x, y is shown :n Figs. 3 and 4 for different values of r at k = 3.0. In Fig. 3 the angle of inclina- 
tion of the plate /3 is plotted as a function of r at x = 25.0 for various values of the adiabatic exponent k. 
In Fig. 6 the f l - r  curves  are  plotted for various values of x at k = 2.7. Finally, Fig. 7 shows the depen- 
dence of the p r e s s u r e  p on the plate on x at k = 3.0 for various r. In all the figures the distance x :s mea -  
sured f rom the detonation front. 

The authors thank L. V. Ovsyannikov for his interest  and useful r emarks .  
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